

What Happens Next? Event Prediction Using a Compositional Neural Network Model

Mark Granroth-Wilding mark.granroth-wilding@cl.cam.ac.uk

Stephen Clark stephen.clark@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, UK

Introduction: event prediction

- ► Knowledge of what **events** are likely in particular contexts is fundamental to human reasoning
- ▶ Important for **narrative generation**, piecing together events in narrative sequence.

E.g., X is arrested \rightarrow X is put in jail: highly plausible

- ► Chambers and Jurafsky (2008) extract event knowledge from text
- ► We build on this to learn a **robust model** of event associations, using **richer information from text**.

Our contributions

- 1. Multiple choice narrative close to evaluate event prediction for models using rich information from text
- 2. EVENT-COMP neural network model of event chain coherence

Unsupervised event chain learning (C&J08)

- ► Coreference resolution finds repeated mentions of an entity in text (red and blue below).
- ► Extract **event chains** sequences of events concerning a particular entity: find verbs with the same entity as an argument.

C&J08 event prediction

Measure association between **context event** and **possible next event** as *pointwise mutual information* (PMI) between predicates.

PMI(X die, X modernize)

Limitations:

- 1. Only looks at verbs, not other information available in text X is put in jail
- 2. Needs lots of data: poor predictions for rare verbs

Multiple choice narrative cloze (MCNC)

- ► New evaluation of event prediction models
- Suitable for models that use richer information about events
- Given context of previous events
- Choice of 5 next eventsActual next event (bold)
- ► 4 randomly chosen distractors

 $x_0 = Giardino \quad x_1 = chairman, him$

 $die(x_0)$, attend(x_0 , reunion), specialize(x_0 , as partner), $describe(x_0, x_1, as product)$, $hold(x_0, position)$, appoint(-, x_0 , to the board), $lead(x_0, effort)$,

- c_1 : receive(x_0 , response)
- c_2 : drive(x_0 , mile) c_3 : seem(x_0)
- c_4 : discover(x_0 , truth)
- c_5 : modernize(x_0 , procedure)

Models

C&J08:

Count cooccurrence of predicates in chains.

Coherence = PMI of predicates

WORD2VEC-PRED:

Learn vectors for predicates so that those that appear in similar chains are close together.

Coherence = vector similarity

WORD2VEC-PRED+ARGS:

Learn vectors for predicates and arguments from contexts of predicates and arguments in chain. Sum components to get event vector.

Coherence = similarity of event vectors

EVENT-COMP:

Simultaneously learn vectors for predicates and arguments, function to compose them, and coherence function as neural network.

See right \Rightarrow

Results

EVENT-COMP neural network

Word embeddings: represent predicate and argument words as vectors **Argument composition:** compose embeddings into event vector

Event composition: predict whether two event vectors come from the same chain

MCNC accuracy (%) 50 40 20 10 Chance word2vec-pred event-comp c&J08 word2vec-pred+args

Conclusions

- ► Simple C&J08 event association measure performs well above chance on MCNC
- ▶ Learning vector representations of predicates gives a more robust model
- ightharpoonup Simple inclusion of argument information (WORD2VEC-PRED+ARGS) helps on MCNC
- ▶ EVENT-COMP learns better event association model

Chambers, N., and Jurafsky, D. 2008. Unsupervised learning of narrative event chains. In *Proceedings of ACL*, 789–797. Association for Computational Linguistics.