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Abstract

Hierarchical structure similar to that associated with

prosody and syntax in language can be identified in

the rhythmic and harmonic progressions that underlie

Western tonal music. Analysing such musical struc-

ture resembles natural language parsing: it requires the

derivation of an underlying interpretation from an un-

structured sequence of highly ambiguous elements—

in the case of music, the notes. The task here is not

merely to decide whether the sequence is grammati-

cal, but rather to decide which among a large number

of analyses it has. An analysis of this sort is a part of

the cognitive processing performed by listeners familiar

with a musical idiom, whether musically trained or not.

Our focus is on the analysis of the structure of ex-

pectations and resolutions created by harmonic progres-

sions. Building on previous work, we define a theory of

tonal harmonic progression, which plays a role analo-

gous to semantics in language. Our parser uses a formal

grammar of jazz chord sequences, of a kind widely used

for natural language processing (NLP), to map music, in

the form of chord sequences used by performers, onto

a representation of the structured relationships between

chords. It uses statistical modelling techniques used for

wide-coverage parsing in NLP to make practical pars-

ing feasible in the face of considerable ambiguity in the

grammar. Using machine learning over a small corpus

of jazz chord sequences annotated with harmonic anal-

yses, we show that grammar-based musical interpreta-

tion using simple statistical parsing models is more ac-

curate than a baseline HMM. The experiment demon-

strates that statistical techniques adapted from NLP can

be profitably applied to the analysis of harmonic struc-

ture.

Keywords: harmony, expectation, grammars, ma-

chine learning, cognition.

1 Introduction

Hierarchical structure can be identified in rhyth-

mic patterns of musical melodies and the har-

monic progressions that underlie them (Winograd,

1968; Lindblom and Sundberg, 1969; Keiler, 1981;

Lerdahl and Jackendoff, 1983; Steedman, 1984;

Johnson-Laird, 1991; Pachet, 2000; Chemillier, 2004;

Rohrmeier, 2011; Katz and Pesetsky, 2011). Similar

structure is found in the prosody and syntax of lan-

guage, commonly analysed using tree diagrams that

divide a passage of speech or text recursively into its

constituents, down to the level of individual words. It is

reasonable to expect that the techniques used to process

natural language might apply to the interpretation of

music.

In natural language processing (NLP), analysing the

syntactic structure of a sentence is usually a prerequi-

site to semantic interpretation. The main obstacle to

such analysis is the high degree of ambiguity in even

moderately long sentences and the search problem it en-

genders. In music, a similar sort of structural analysis,

exhibiting a similar degree of ambiguity, is fundamental

to interpretation by a listener (Lerdahl and Jackendoff,

1983; Steedman, 1984; Temperley, 2001). Hierarchi-

cal structures have been proposed to characterize the

cognitive structures that underlie a listener’s process-

ing and recollection of a musical signal (Keiler, 1981;

Steedman, 1984; Rohrmeier and Cross, 2009) and an

analysis of these structures underlies the raising of har-

monic expectation in a listener (Huron, 2006). The

same analysis is involved in practical computational

tasks such as key identification and score transcrip-

tion. These tasks in general depend on both a harmonic

(tonal) analysis and a rhythmic (metrical) analysis.

Our focus in the present paper is on analysis of

the structures of harmonic expectation and resolution

that underlie the cognition of harmonic progressions

(Huron, 2006). We use the three-dimensional tonal har-
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monic space first described by Euler (1739) and others,

and developed in computational terms, including the

distance metric we use, by Longuet-Higgins (1962a,b)

and Longuet-Higgins and Steedman (1971). This rep-

resentation provides the basis for a theory of tonal har-

monic progression—that is, a framework in which to

analyse the relationships between the chords underly-

ing a passage of music.

The input to the analysis is a sequence of chord sym-

bols of the sort used by jazz performers on lead sheets.

An assumption of our approach, in common with many

others, is that this serves as a proxy for some intermedi-

ate level of representation which features in the process

of harmonic analysis of a performance undertaken un-

consciously by a listener. We treat this analysis of the

tonal relations between chords analogously to the logi-

cal semantics of a natural language sentence. By defin-

ing a representation of relations in the tonal space in a

form similar to that used to represent natural language

semantics, we are able to apply techniques from NLP

directly to the problem of harmonic analysis.

We define by hand a small formal grammar of jazz

chord sequences using a formalism based closely on

one widely used for NLP and developed from the

version developed for musical purposes by Steedman

(1996). We then use statistically-based modelling tech-

niques commonly applied to the task of parsing nat-

ural language sentences with such grammars. The

parser maps music, in the form of chord sequences,

onto its harmonic interpretation expressed as a trajec-

tory through the tonal space. To obtain the parsing

model, we use supervised learning over a small corpus

of chord sequences of jazz standards taken from lead

sheets used by performers. Each is annotated by hand

with harmonic analyses that we treat for the purposes of

the parsing task as a gold standard.

It is important to be clear that the purpose of the

handbuilt grammar is not to capture all and only the

sequences in this corpus. It is rather to assign possi-

ble harmonic analyses to a much larger, essentially in-

finite, set of sequences in the same idiom. Although

this grammar is small enough to write on a single page

(figure 14), it is extremely ambiguous. Like natural

language grammars, it allows large numbers of anal-

yses, most of which are semantically ridiculous, for

even quite simple examples. The purpose of the pars-

ing model is to assign probabilities to these alternatives

expressing their likelihood estimated on the basis of the

training sample data, in order to choose the most likely,

and even to exclude the least likely entirely, in order to

reduce the search space for the correct one.

As in NLP, the parser is evaluated by the degree to

which the analyses it chooses for held out unseen sen-

tences correspond to those assigned by human annota-

tors. In this connection, it is important to realize that

it is more important that the training data be consistent

than that it be correct in every detail. If it is consistent,

then the parser will be able to recover the interpretations

implicit in the annotation, and any other comparably

consistent annotation it is trained on. However, if the

annotation is not internally consistent, then it cannot be

modelled.

It is for this reason that certain annotations in the

standard parsing corpus for English, the Penn Treebank

(Marcus et al. 1993), are tolerated despite being techni-

cally incorrect linguistically—for example, the distinc-

tion between N-modifiers and NP-modifiers was judged

not to be reliably drawn by the annotators, so all nom-

inal modifiers are annotated, often incorrectly, as NP-

modifiers. Similarly, one can take linguistic issue over

the choice of a “small clause” analysis of object control

for the treebank—but no-one really cares, because the

same modelling technique would be able to recover the

alternative analysis, and the two are interconvertible.

Musical treebanking is the same. Opinions may dif-

fer as to whether in a chord sequence C F C, the F is

harmonically dependent on the first C, the last C, or

both. So long as the notation is both coherent and con-

sistent on such points, it does not much matter which

we choose.

Of course, both for NLP and the musical equivalent,

we ultimately want an extrinsic evaluation, via objec-

tive success on a task in the real world, such as question

answering from text or successful improvization. How-

ever, intrinsic evaluation on ability to recover the nec-

essary information is a standard first step on the way,

as a sanity check and as a benchmark for alternative ap-

proaches to prove themselves against. It is an evaluation

of this sort that we present here.

The full corpus can be accessed, and its

coherence and consistency be assessed, at

http://jazzparser.granroth-wilding.co.uk/.

All musical examples used in the paper can also be

heard at that URL.

2 The Relationship of Music and Lan-

guage

The temptation to believe music and language to

be closely related cognitive systems seems irre-
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Figure 1: “Shave and a haircut, six bits”

sistible (Sundberg et al., 1991; Rebuschat et al.,

2011). Grammarians have noticed strong parallels

between language and music at the level of the

sound-systems of phonology and prosody (Daniélou,

1968, cf. Lerdahl and Jackendoff, 1983:314-330,

Fabb and Halle, 2012). At times, this insight has

led to the application of theoretical devices from

language to music (Meyer, 1956; Longuet-Higgins,

1962a,b; Lindblom and Sundberg, 1969; Smoliar,

1976; Lerdahl and Jackendoff, 1983; Baroni et al.,

1983, 1984; Temperley, 2007). It has been much

less clear how to extend this apparently produc-

tive generalization to higher levels of structure and

interpretation.

For example, what is the “meaning” of the melodic

passage in figure 1 (first used in this context by

Longuet-Higgins, 1976)? It is rhythmically and melod-

ically well-formed and, in its little way, entirely sat-

isfying as a piece of Western tonal music, in a sense

that the first six notes alone would not be. In that

sense, we may be tempted to assign a rhythmic and

harmonic structure to it, say along the lines suggested

by Lerdahl and Jackendoff (1983). The interest of such

structures for present purposes lies in the extent to

which we can assign them an interpretation.

The notion of musical meaning has very fre-

quently been linked to the idea of the emotions

(Cooke, 1959). The most empirically testable claims

of this kind have defined emotion in terms of the

satisfaction or frustration of musical expectations

of various kinds (Meyer, 1956; Cooper and Meyer,

1963; Narmour, 1977; Margulis, 2005; Huron, 2006;

Pearce and Wiggins, 2006; Lehne et al., 2013).

Most listeners will intuitively divide the tune in fig-

ure 1 into two parts, corresponding to the two bars,

and sense that the first bar creates an expectation which

the second bar satisfies. More specifically, the first bar

moves from the tonic or key note C to the fifth or dom-

inant tonality of G, which creates an expectation of a

cadential return to the tonic.

The above description can be verified by making the

claimed tonal progressions explicit with some chords:

C major for the first half bar, establishing the tonic; G

major (with the “dominant” seventh note—G7) in the

second half-bar; then a further chord of G7 followed by

C major in the second bar. In the light of this observa-

tion, we can claim that an important part of the meaning

of the piece as a whole is a statement of the tonic, fol-

lowed by a “cadential” progression from its dominant

back to that tonic.

The notion of musical structure and meaning that we

deal with in this paper is confined to such relatively lo-

cal cadential relations between chords and sequences

of chords. We make no claim that these relations ex-

tend to higher levels of structure, such as that of sonata

form, as sometimes claimed by Schenker (1906) and

followers. We suspect that a quite different kind of

of rule may apply at these levels, such as the peri-

odic patterns of Simon and Sumner (1968). In this re-

spect, our theory is consistent with the observations of

Tillmann and Bigand (2004) concerning the psycholog-

ical distinction between “local” and “global” structure

and interpretation in music.

3 Musical Syntax

The syntax of Western tonal harmony and that of natural

language can both be analysed using tree structures, and

both have been claimed to feature formally unbounded

embedding of structural elements (Winograd, 1968;

Keiler, 1981; Lerdahl and Jackendoff, 1983; Steedman,

1984; Rohrmeier, 2011). In harmony, these structures

arise as a result of relationships of harmonic expecta-

tion and resolution between chords (Huron, 2006). This

phenomenon is sometimes referred to as harmonic ten-

sion, but should not be confused with other notions of

tension in music. For example, Lerdahl (2001) appeals

to a quite different type of musical tension, which in-

cludes notions of harmonic expectation, but has more

to do with a perceived sensation of tension in a listener,

also due to metre, dissonance (see Johnson-Laird et al.,

2012) and other musical factors.

In terms of the formal expressive power of their syn-

tactic grammars, the works above contrast with ap-

proaches to harmonic analysis based on Rameau (1722)

and Riemann (1893), though in other respects they are

closely related. This paper describes a syntactic for-

malism based on that of Steedman (1996) for wide-

coverage analysis of Western tonal harmony, focusing

on the analysis of jazz standards, and the application

of statistical parsing techniques to the practical prob-

lem of automatic computational analysis. Other ap-

proaches to computational analysis have been explored
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using related formalisms (Pachet, 2000; Chew, 2000;

Hamanaka et al., 2006; de Haas et al., 2009; Marsden,

2010; Choi, 2011).

3.1 Cadences

The key component of harmonic structure is the ca-

dence of the kind implicit in our analysis of figure 1,

built from expectation-resolution patterns. Large struc-

tures can be analysed as extended cadences, made up of

successive expectation-resolution patterns chained to-

gether1. These patterns can be formalized in terms of

harmonic function (Riemann, 1893).

Cadences come in two varieties. The authentic ca-

dence consists of a chord rooted a perfect fifth above

its expected resolution. This type of tension chord is re-

ferred to as a dominant chord, and is the kind implicit in

figure 1. The plagal cadence consists of a tension chord

rooted a perfect fourth above its resolution. This type of

tension chord is referred to as a subdominant chord. In

both cases, the resolution chord is classified as a tonic

chord. This classification of a particular occurrence of

a chord identifies its function on that occasion of use,

and partly establishes its place in the harmonic structure

in relation to the surrounding chords. The same chord

type, such as a G major triad, on different occasions of

use in the same piece may function variously as a dom-

inant or subdominant tension chord or as a tonic reso-

lution (or both), or as a substitute for such dominants,

subdominants or tonics (for example, as a Neapolitan

sixth).

An extended cadence occurs when a tension chord re-

solves by the appropriate interval to a chord that is itself

cadential, creating a further tension and subsequently

resolving. An example is the D7 chord in figure 2, an

extended dominant. Such a definition is recursive, and

extended cadences can accordingly be indefinitely ex-

tended. This kind of extension is most common with the

authentic cadence. We include in our use of the terms

dominant and subdominant this recursive, or extended,

function. Keiler (1981) treats the cadential relation in a

similar recursive fashion.

A cadence Dm7 G7 C has two possible interpreta-

tions: it may contain a recursive dominant relation or

be an alternative transcription of the common classical

form of a perfect cadence F6 G7 C. However, when the

1Throughout this paper, the term cadence will be used precisely

to refer to connected structures of expectation-resolution patterns and

not to refer to resolutions at points of particular significance in the

global structure of a piece.

t

C

d

A7

d

D7

d

G7

t

C

Figure 2: An extended authentic cadence, a typical ex-

ample of (tail) recursion in music. The A7 acts as a

dominant resolving to the D7, which in turn resolves by

the same relation to G7, which then resolves to the tonic

C.

recursion reaches back further, preceded for example by

A7, only the former interpretation explains the relation

between the seemingly tonally distant tension chord and

its eventual resolution (here the cadence from A7 even-

tually resolving to C), even in the case where a Dm7

chord would otherwise lead to an ambiguous interpre-

tation.

A cadence might not reach its eventual resolution in

a tonic chord immediately. An unresolved dominant ca-

dence, such as D7 G7, creating an expectation of tonic

C, may be interrupted by a further cadence, say A7 D7

G7, creating the same expectation, whereupon both ca-

dential expectations will be resolved by the same tonic

C, as in example (1).

(1) C (D7 G7) (A7 D7 G7) C

We refer to this operation as coordination by virtue of

its similarity to right-node raising coordination in sen-

tences like Keats bought and will eat beets (see sec-

tion 5.1), in which beets satisfies the expectations of

both bought and eat.

Coordinated cadences may themselves be embedded

in a coordinated cadence, as in example (2) from Call

Me Irresponsible, by Jimmy Van Heusen, with coordi-

nation of constituents marked by &.

(2) ((D♯◦7 Em7 Am7) & ((E7 & (Bφ 7 E7♭9)) A7))

The longer cadence in which example (2) appears in-

cludes still further levels of embedding and is shown

as a tree structure in figure 3. This embedding process

is again mirrored in natural language coordination like

Keats ((may or may not) cook) but (certainly eats) beets

(see section 5.1).

Chords that function as dominants are often partially,

though ambiguously, distinguished by the addition of
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&

C♯◦7 Dm7

&

D♯◦7 Em7 Am7

&

E7
Bφ7 E7♭9

A7

Dm7

G7

Figure 3: Tree representing the embedded structure of

unfinished cadences in Call Me Irresponsible. The ca-

dence shown here is in fact further embedded: the even-

tual resolution to the tonic C is not reached until after

another cadence structure, similar to this one.

notes other than those of the basic triad. In particular,

the “dominant seventh”, realized by the addition of the

note a (major) tone below the chord’s root, enhances

the cadential function of a dominant chord and height-

ens the expectation of the corresponding tonic. How-

ever, this note may be omitted from a dominant chord,

and conversely the same keyboard note may be used in

chords that are not functioning as a dominant, such as a

Dm7 functioning as a substitute for the subdominant of

tonic C.

Although the theory of harmonic structure presented

here is concerned with modelling the cognitive struc-

tures underlying harmonic expectation, it is worth not-

ing that the same notion of recursive structure is re-

quired of any theory that accounts for the A7 chord of

example (1) by reference to a local tonality of D whilst

maintaining the key of the passage as C (that is, without

modulation).

3.2 The Jazz Sublanguage

The typical size and complexity of the cadence struc-

tures discussed above varies with musical period and

genre. Tonal jazz standards or themes are of particular

interest for this form of analysis for several reasons.

First, they tend to feature large extended cadences,

often with complex embedding. Second, they contain

many well-known contrafacts, harmonic variations of

a familiar piece, created using a well-established sys-

tem of harmonic substitutions, embellishments and sim-

plifications. Finally, jazz standards are rarely tran-

scribed as full scores, but are more analytically no-

tated as a melody with accompanying chord sequence.

Analysing the harmonic structures underlying chord se-

quences, rather than streams of notes, avoids some dif-

ficult practical issues such as voice leading and perfor-

mance styles, but still permits discovery of the kind of

higher-level structures we are concerned with.

Our study focuses on the analysis of harmonic struc-

ture in chord sequences of jazz standards. This is not

to say that the approach is not applicable beyond this

domain, nor that it is confined to analysing chord se-

quences. The lexicon of the grammar outlined below,

however, is somewhat specific to the genre. The gram-

mar of Rohrmeier (2011), although using a different

notation to that proposed here, captures a very similar

form of structural analysis (pers. comm.), but aims for

broader coverage and has been shown to be applicable

to the annotation of a wide range of genres.

To help with understanding many of the examples be-

low, it is worth noting that jazz chord progressions use a

rich vocabulary of chord types: sixth chords (C6), major

seventh chords (CM7), half-diminished chords (F♯φ 7),

and so on, as well as simple major and minor chords.

In general, the harmonic function of a chord is not fully

determined by its type, but certain types strongly sug-

gest a function. For example, a C7 is likely, though

not certain, to have a dominant function, whilst a C6 is

likely to have a tonic function. The examples below use

such suggestive chord types to make more obvious the

functional interpretation that is intended. However, the

statistical modelling techniques we describe are fully

general, and cope with the full ambiguity of interpreta-

tion characteristic of real performance.

4 A Model of Tonality

In analysing the roles of pitch in music, it is impor-

tant to distinguish between consonance, the sweetness

or harshness of the sound that results from playing two

or more notes at the same time, and harmonic interpre-

tation, relevant to the phenomenon that we have already

alluded to as tension (or the creation of expectation) and

resolution (or its satisfaction). Both of these relations

over notes are determined by small whole-number ra-

tios, and are easily confounded. However, they arise in

quite different ways, the first from the perceptual appa-

ratus, the second from cognition.

As is common in music theory, we treat these as
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two theoretically distinct musical dimensions. A com-

plete model of musical cognition would require a the-

ory of both and of their interaction (as discussed, for

example, by Krumhansl, 1990 and Johnson-Laird et al.,

2012). The present work models the harmonic dimen-

sion alone.

4.1 Consonance

The modern understanding of consonance originates

with Helmholtz (1862), who explained the phenomenon

in terms of the coincidence and proximity of the sec-

ondary overtones and difference tones that arise when

simultaneously-sounded notes excite real non-linear

physical resonators, including the human ear itself.

These tones may include all integer multiples (and, in

some cases, dividends) and the fundamental.

4.2 Harmony

The tonal harmonic system also derives from combina-

tions of small integer pitch ratios. However, the har-

monic relation is based solely on the first three prime

ratios in the harmonic series: ratios of 2, 3 and 5 (com-

monly known as the octave, perfect fifth and major

third). The tuning based on these intervals is known

as just intonation.

4.2.1 Just Intonation In just intonation, an interval

can be represented as a frequency ratio defined as the

product 2x · 3y · 5z, where x,y,z are positive or nega-

tive integers. It has been observed since Euler (1739)

that the harmonic relation can therefore be visualized as

an infinitely extending discrete three-dimensional space

with these three prime factors as generators. Since notes

separated by octaves are essentially equivalent for tonal

purposes, it is convenient to project the space onto the

3,5 plane. We present this theory as formally developed

by Longuet-Higgins (1962a,b) in figure 4.

Longuet-Higgins and Steedman (1971) observed that

all musical scales are convex sets of positions, and de-

fined a Manhattan taxi-ride distance metric over this

space. According to this metric, it will be observed that

the major and minor triads, such as CEG (shown in fig-

ure 4) and CE♭G, when plotted in this space are two of

the closest possible clusters of three notes. The triad

with added major seventh is the single tightest cluster

of four notes. The triads and the major seventh chord

are therefore stable, raising no strong expectations, of

the kind that typically end a piece. Chords like the aug-

mented and diminished chords and the dominant sev-

Figure 4: Part of the space of note-names (adapted from

Longuet-Higgins, 1962a,b). Notes are separated by ma-

jor thirds along the horizontal axis and perfect fifths

along the vertical. The space extends infinitely in both

dimensions. The circled points form a C major triad.

enth are more spread out. This difference is vital to the

induction of harmonic expectation, and its satisfaction.

The space of justly intoned intervals does not include

ratios involving higher prime factors. Whilst these ra-

tios are important to the explanation of consonance,

they do not play a role in the description of the tonal

harmonic system.

4.2.2 Equal Temperament Over several centuries, it

was gradually realized that the tonal harmonic space

could be approximated, first by slightly mistuning the

fifths to equate all the positions that have the same

names in figure 4, and then by even further distorting

the major thirds, to equate C with B♯, D♭♭, etc. In the

system of equal temperament, this is done by spacing

the 12 tones of the diatonic octave evenly, so that all the

semitones are (mis)tuned to the same ratio of
12
√

2.

Since the eighteenth century most instruments have

been tuned according to equal temperament. It has the

advantage that all keys and modes can be played on

the same instrument without retuning and has permit-

ted the development of musical styles in which pieces

may modulate relatively freely between keys. In terms

of the tonal space, the result is a projection onto a fi-

nite toroidal space of just 12 points, looping in both di-

mensions. Each point is (potentially, infinitely) tonally

ambiguous as to which point in the full justly-intoned

space of figure 4 it denotes.

Equal temperament thus obscures the harmonic re-

lations between notes. However, human listeners can

resolve this tonal ambiguity in context, and invert the

projection onto the torus to recover the interpretation of
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the intervals in the full harmonic space. This is possi-

ble because the harmonic intervals that are sufficiently

close in justly intoned frequency to be equated on the

equally tempered torus are sufficiently distant in the full

space for the musical context to disambiguate them. For

example, if the context defines the tonality as G, then

an equally tempered note that could in isolation be in-

terpreted as any of C, B♯, D♭♭, etc. (or the identically

named points to the left or right) must be interpreted as

C, because that is the only harmonic interpretation that

is anywhere close to G.

It is important to realize that ambiguous equally

tempered music is unconsciously interpreted in terms

of the full tonal frequency space of harmonic distinc-

tions, just as a (theoretically, infinitely ambiguous)

two-dimensional photograph is interpreted as a three-

dimensional scene. It is for this reason that equally

tempered B♭ is interpreted in tonal music as related

to C by either a dominant seventh (ratio 8
9
) or a mi-

nor seventh (ratio 8
9
), but never by an interval related

to the seventh harmonic (ratio 7
8
). The equally tem-

pered minor/dominant seventh should therefore never

be claimed to approximate a suboctave of the seventh

harmonic, as is often alleged (Jeans, 1937; Bernstein,

1976; Tymoczko, 2006). This is not to deny that vari-

eties of music other than the tonal might take the sev-

enth harmonic as a primitive ratio, although it is doubt-

ful that such a music could support equal temperament

or even a very extensive form of harmony. Experience

of the Bohlen-Pierce scale (Mathews and Pierce, 1989)

appears to prove the point.

It should be noted that the tonal space used here rep-

resents the tonal relations between notes in the tonal

harmonic system and is thus unsuited to a model of con-

sonance and dissonance. As noted above, we maintain

the distinction on theoretical grounds between these two

musical structures and do not modify the space to bet-

ter accommodate a notion of proximity due to conso-

nance or voice leading (cf. Euler, 1739; Riemann,

1914; Lerdahl, 2001; Tymoczko, 2011) or perceptual

responses, which may be the result of a combination

of these and other structures (cf. Krumhansl, 1990).

4.3 Domain for Analysis

In our grammar for jazz chord sequences, we take the

full tonal space as the semantic domain of harmonic

analysis. The harmonic interpretation of a piece is the

path through the tonal space traced by the roots of the

chords.

Figure 5: A tonal space path for the extended cadence:

C A7 D7 G7 C.

If we establish that there is a dominant-tonic

expectation-resolution relationship between two

chords, we know that the underlying interval between

the roots is a perfect fifth, a single step to the left in

the space. On the other hand, establishing that a pair

of chords stand in a subdominant-tonic relationship

dictates a perfect fourth between them, a rightward

step. Where no expectation-resolution relationship

exists, as between a tonic and the first chord of a

cadence that follows it, we assume a movement to the

most closely tonally related instance of the chord root.

Figure 5 shows an example of a tonal space path for

an extended cadence. The perfect fifth relationship be-

tween the dominants and their resolutions is reflected in

the path. The first step on the path is not an expectation-

resolution relationship, so proceeds to the closest in-

stance of the A (according to the Manhattan distance

metric of Longuet-Higgins and Steedman, 1971). By

identifying the syntactic structure of the harmony, that

is the recursive structure of expectation-resolution rela-

tionships between pairs of chords, we produce the path

through the space that this dictates for the chord roots

of the progression, including those that have been sub-

stituted for.

5 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a grammar

formalism used for parsing natural language sentences

to produce logical representations of their semantics. A

short introduction to CCG is given in the next section.

For a full introduction to its application to natural lan-

guage, see Steedman (2000).
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Keats eats beets

NP (S\NP )/NP NP
>

S\NP
<

S

Figure 6: A derivation showing the function application

rule in use.

5.1 CCG for Language

A CCG grammar includes a lexicon, which associates

words with one or more syntactic categories determin-

ing structures they may appear in. During parsing, cate-

gories assigned to consecutive chords are projected onto

constructions and sentence interpretations using a small

set of combinatory rules, constrained by the form, or

“type”, of the categories.

The lexical categories are defined in terms of a small

set of atomic syntactic types, including, for instance, S

(sentence) and NP (noun phrase). A category’s combi-

natory potential is defined in terms of the atomic types

using the / and \ operators. Thus, a category X/Y de-

notes a function category that can combine with an ar-

gument category Y to its right to produce a result of cat-

egory X . Likewise X\Y indicates that a Y is expected to

the left.

Categories can combine by grammatical rules of

function application, defined as follows. The symbols

> and < are used to identify the rules in derivations,

such as figure 6.

a. X/Y Y ⇒ X (>)
b. Y X\Y ⇒ X (<)

Figure 6 shows the use of the function application

rule in a simple syntactic derivation. (Note that the term

function is not related to the concept of harmonic func-

tion.)

In order to produce an interpretation for the full sen-

tence from the syntactic derivation, each lexical item

also has a semantics, or logical form, and each rule de-

fines how the logical forms of its arguments are com-

bined. The function application rules in their full form

are:

a. X/Y : f Y : x ⇒ X : f (x) (>)
b. Y : x X\Y : f ⇒ X : f (x) (<)

Figure 7 shows an example of a derivation with

semantics. We use an apostrophe to distinguish the

language-independent meaning of a word from its writ-

ten surface form. Thus, beets’ refers in logical expres-

Keats eats beets

NP : keats′ (S\NP )/NP : eats′ NP : beets′
>

S\NP : eats′(beets′)
<

S : eats′(keats′, beets′)

Figure 7: An example of a derivation with a logical

form associated with each category.

Keats will eat beets

NP (S\NP)/VP VP/NP NP

: keats ′ : will ′ : eat ′ : beets ′
>B

(S\NP)/NP

: λx .will ′(eat ′(x ))
>

S\NP

: will ′(eat ′(beets))
<

S : will ′(eat ′(beets))(keats ′)

Figure 8: A derivation demonstrating the use of the

function composition rule

sions to the objects denoted, depending on the language,

by the words beets, betteraves, betor, etc.

Several other rules allow grammars to capture lin-

guistic phenomena such as coordination and relativiza-

tion. The only one relevant to the present discussion is

function composition.

Function composition rules permit complex cate-

gories to be combined before their argument is avail-

able. The result may then be applied (using function ap-

plication) to the argument when it is eventually encoun-

tered. The final outcome is the same as if only function

application had been used, but composition allows this

outcome to be produced by a different order of combi-

nations. This is important for, among other things, in-

cremental analysis of a sentence. Figure 8 demonstrates

the use of the function composition rule.

Function Composition:

a. X/Y : f Y/Z : g ⇒ X/Z : λx. f (g(x)) (> B)
b. X\Y : f Z\X : g ⇒ Z/Y : λx.g( f (x)) (< B)

It should be noted that, although in this particu-

lar derivation the analysis of the tensed verb phrase is

left-branching, the logical form that it builds is right

branching and identical to that in the alternative func-

tion application-only derivation, as its semantics re-

quires. (The latter is suggested as an exercise.)

The full range of reasons for treating natural lan-

guage grammar in this way need not detain us here,

8



Keats bought and will eat beets

NP (S\NP)/NP CNJ (S\NP)/VP VP/NP NP
>B

(S\NP)/NP
&

(S\NP)/NP
>

S\NP
<

S

Figure 9: A derivation using a coordination rule to com-

bine two constituents of the same syntactic type, sepa-

rated by a conjunction (and).

but one is to do with the fact that constructions like co-

ordination involving long-range semantic dependencies

treat incomplete fragments like will eat as typable con-

stituents that can be combined with others of the same

type in derivations. Figure 9 shows the use of the co-

ordination rule to combine bought and will eat into a

single constituent that can combine with beets (the se-

mantics is omitted, but can be inferred from figure 8).

The rest of the paper shows that musical analysis in-

volves similar long-range dependencies, and calls for

the same approach.

5.2 CCG for Harmony

For parsing the syntax of harmony, we use a formal-

ism similar to the standard CCG for English. Following

Steedman (1996), we use harmonic syntactic categories

that define cadential expectation, like GD/CT , identify-

ing chords like G7 as combining with a C chord acting

as a tonic to its right. In both cases, categories X/Y can

be seen as defining “expectation” of Y.

Lexical categories are assigned to chords. Pairs of

adjacent categories are then combined using a small set

of rules to build up an interpretation of the whole pas-

sage. We use some of the standard combinatory rules

given in section 5.1 and some rules specific to harmonic

syntax. Each category, lexical or derived, is paired with

a semantics, or logical form, representing an interpre-

tation of the chord roots in the tonal space—the har-

monic analysis itself. We describe this in detail in the

appendix.

In the examples here, we shall omit the logical forms

of categories, but it is crucial to bear in mind that each

intermediate category produced during a derivation cor-

responds to a partial harmonic interpretation of the

chords and that this is available as the category’s log-

ical form. This distinction between the analysis struc-

ture and the constituent structures required to build it

C G7 C6

CT GD/CT CT

>

GD–CT

Figure 10: Partial CCG derivation of a simple cadence:

a dominant-tonic resolution. The derivation uses the

dominant and tonic lexical categories, combined using

the function application rule (see section 6.2). The sym-

bol > identifies the rule used.

C A7 D7 G7 C6

CT AD/DD|T DD/GD|T GD/CD|T CT

>B

AD/GD|T

>B

AD/CD|T

>

AD–CT

dev

CT

Figure 11: CCG derivation of an extended cadence, us-

ing the tonic category and the (extended) dominant cate-

gory, combined by using the rules of section 6.2. Dom-

inant categories are combined first to interpret the in-

complete cadence, which is then combined with its res-

olution. The symbols >, >B and dev identify the rules

used.

compositionally from the surface form has been made

for natural language semantics (Steedman, 2000) and

was first proposed in the present form for harmonic

analysis by Steedman (1996). Closely related for-

malisms for grammatical harmonic analysis have been

proposed without making this distinction formally ex-

plicit (Keiler, 1981; Rohrmeier, 2011).

An atomic category’s syntactic type carries informa-

tion about the tonality at the start and end of the passage

it spans. This is the only harmonic information relevant

to constraining how it can combine with adjacent cat-

egories. Each end has a harmonic root, in the form of

an equally tempered pitch class, and a chord function,

one of T (tonic), D (dominant) and S (subdominant).

For brevity, where the start and end parts of an atomic

category are the same, we write just one: a category

CT –CT is abbreviated to CT . Such a category is used

to represent a tonic chord.

A passage beginning on a G chord functioning as

dominant, followed by a tonic C receives the syntactic

type GD–CT . The two-step cadence D7 G7 C would

9



C D7 G7 A7 D7 G7 C6

CT CT

DD/CD|T AD/CD|T

&

DD/CD|T

>

DD–CT

dev

CT

Figure 12: CCG derivation using the coordination rule

to combine interpretations of unresolved cadences.

receive the type DD–CT . In the latter example, the

type has been derived from interpretations of the C as

a tonic chord, the D7 a secondary dominant and the

G7 a dominant, combining these partial interpretations

and their associated harmonic analyses. Typically a se-

quence of chords specified by equally tempered notes

will support many such interpretations, varying in plau-

sibility.

A forward-facing slash category X/Y gives the start-

ing tonality Y expected for the category to its right (its

argument) and the starting tonality X that will be used

for the result of applying it to such an argument. Such a

category is used to reflect the interpretation of a domi-

nant chord, like those in figure 10. A forward slash cat-

egory can be combined with its immediately following

resolution to a tonic chord using the function applica-

tion combinatorial rule, as shown in figure 10.

Extended cadences, using a recursive, or extended,

dominant function, such as the one in figure 11, are

handled by allowing the dominant category to combine

with another dominant, using the function composition

rule (identified by >B), just as in the linguistic exam-

ples in section 5.1. The result is another forward slash

category, which is subsequently combined with the res-

olution. The lexical category used to interpret a domi-

nant chord, the GD/CT of figure 10, is now replaced by

GD/CD|T , permitting it to combine either with a tonic

resolution (as in figure 10) or with another dominant

chord (as in figure 11). It should be noticed that this par-

ticular derivation of the extended cadence is now left-

branching, like the example in section 5.1, even though

the analysis it produces (omitted in figure 11) is formal-

ized as a right-branching (“tail-recursive”) structure.

Backward slash categories are precisely the reverse

of forward slash categories. They specify the end tonal-

ity required of the argument (after the slash) and the

end tonality that the result will have. They are much

less used than / and usually simpler2.

A combinatory rule resembling the one used for nat-

ural language coordination (see section 5.1) allows in-

terpretation of interrupted, or coordinated, cadences. A

chain of dominant seventh chords, without their final

resolution, can be treated as a constituent, thanks to

function composition. The coordination rule (identified

by &) combines two such constituents which expect the

same resolution into a single slash category, which also

expects this resolution3. We demonstrate this in fig-

ure 12 (derivations of the constituents are omitted for

brevity).

As is typically the case with lexicalized grammar for-

malisms, much of the work of interpretation is done in

the choice of lexical categories for each chord. Chord

substitution is handled in this way. For example, jazz

musicians may replace a dominant seventh chord by

another dominant seventh chord whose root is an aug-

mented fourth lower. This is the tritone substitution.

Each substitution is handled by adding a new line to the

lexical schemata in figure 14, discussed in the next sec-

tion. An example derivation using a tritone substitution

is shown in figure 13.

6 A Grammar for Jazz

6.1 The Lexicon

We are now able to define a jazz chord lexicon in full,

shown in figure 14. Each entry is a lexical schema

which has a mnemonic label to serve as an identifier, a

surface chord class, a syntactic type and a logical form

(see the appendix for full details of the notation for log-

ical forms). The surface chord class generalizes over

chord roots X. During parsing, a lexical schema may be

used to assign a category to a chord, provided the chord

falls into the general class of chords represented to the

left of the :=. Thus, whilst the harmonic analysis takes

the form of a path traced by the chords’ roots through

the tonal space, the chords’ types restrict the categories

that may be used to interpret them4. The pitch classes

within the category itself (right of the :=) are expressed,

2This is a result of the fact that the analysis, which represents har-

monic expectation, is inevitably forward-looking. The few backward

slash categories used handle tonic elaborations and do not contribute

any relations to the analysis structure.
3This approach to interrupted cadences differs from that most

commonly seen in music theory (Piston, 1949) and is advocated by,

among others, Keiler (1978) and Rohrmeier (2011).
4Chord types have further influence on the interpretation through

the statistical models introduced below.
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Gm7 Cm7 B7 B♭7 E♭6

GD/CD|T CD/FD|T FD/B♭D|T B♭D/E♭D|T E♭T
>B

GD/FD|T

>B

GD/B♭D|T

>B

GD/E♭D|T

>

GD–ET

Figure 13: A cadence from Can’t Help Lovin’ Dat Man (in the key of E♭). The B7 replaces an F7, an example of

the tritone substitution, and receives the same syntactic type that F7 would have received.

using roman numerals, relative to the played root of the

chord to which the category is assigned (X). An exam-

ple use of each schema is given in the key of C.

All surface chords are assumed to be in equal tem-

perament. The input therefore does not distinguish be-

tween enharmonically equivalent roots, like G♯ and A♭.
Indeed, this disambiguation is part of the analysis per-

formed during parsing, and may be inferred from the

logical form of a full parse. The constraints expressed

by the syntactic categories operate prior to this analy-

sis, so cannot make these distinctions. We arbitrarily

choose to use flats throughout the lexicon.

The mnemonic label Ton is used to identify a sim-

ple tonic chord function. The corresponding syntactic

category takes on the chord’s pitch class. The logical

form represents a point in the tonal space which is con-

strained to be one of those points that are mapped by

equal temperament to the root of the surface chord. At

this stage, it is meaningless to distinguish between the

points in this infinite set: what will be of importance

is the root’s relation to other points in the path. The

logical form is a coordinate in a 4×3 space identifying

this set, written 〈x,y〉. Like the syntactic types, the co-

ordinate in the lexicon implicitly generalizes over the

possible roots of the surface chord. For example, if the

surface chord has root C, the logical form will become

〈0,0〉, whilst if the root is B the logical form is 〈1,1〉
(see figure 4).

The mnemonic Dom identifies a rule that says a sur-

face chord C7 can be interpreted with the syntactic type

CD/FD|T and a logical form denoting a leftward move-

ment in the space to its resolution. It can be applied,

for example, to a surface chord G7, giving the syntac-

tic type GD/CD|T . As in the natural language semantics

in section 5.1, we use the lambda calculus to express a

predicate whose argument is not yet filled. When one

of these categories is combined with its resolution, the

predicate (leftonto/rightonto) will be applied to the res-

olution’s logical form. Figure 15 shows this in action to

interpret a short extended cadence.

The mnemonic Dom-tritone in figure 14 identifies

the tritone substitution of a dominant function chord.

The syntactic type is identical to that that would have

been assigned as a simple dominant interpretation of the

substituted chord (that rooted on the tritone). In other

words, this entry allows us to interpret a chord D♭7 ex-

actly as if it had been a G7 chord. Most of the entries in

the lexicon represent other substitutions and work along

similar lines. Those included in the lexicon here consti-

tute a set suitable to interpret a large range of jazz stan-

dards, but more could be added to cover a wider range

of substitutions or to adapt the grammar to a different

domain.

6.2 Combinatory Rules

Most of the work of interpretation is done in the se-

lection of lexical categories. Only four rules are used

to build derivations. Function application and func-

tion composition are merely adaptations of their con-

ventional forms to the musical formalism and behave

as described in section 5.2. The rules are applied to si-

multaneously combine the syntactic categories and the

logical forms. Each rule has a symbol used to identify

its use in derivations.

Function application:

Forward (>)

X/Y : f Y –Z : x ⇒ X–Z : f (x)
Backward (<)

X–Y : x Z\Y : f ⇒ X–Z : f (x)

Function composition:

Forward (>B)

11



Mnemonic

label
Category schema

Example

chord
syntactic

type

Ton. X(m) := IT : [〈0,0〉] CM7 CT

Ton-III. Xm := ♭V IT : [〈0,2〉] Em CT

Ton-bVI. X := IIIT : [〈0,1〉] A♭M7 CT

Dom. X(m)7 := ID/IV D|T : λx.leftonto(x) G7 GD/CD|T

Dom-backdoor. X(m)7 := V ID/IID|T : λx.leftonto(x) B♭7 GD/CD|T

Dom-tritone. X(m)7 := ♭V D/V IID|T : λx.leftonto(x) D♭7 GD/CD|T

Dom-bartok. X(m)7 := ♭IIID/♭V ID|T : λx.leftonto(x) E7 GD/CD|T

Subdom. X(m) := IS/V S|T : λx.rightonto(x) F FS/CS|T

Subdom-bIII. X := V IS/IIIS|T : λx.rightonto(x) A♭ FS/CS|T

Dim-bVII. X◦ := IV D/♭V IID|T : λx.leftonto(x) Ddim7 GD/CD|T

Dim-V. X◦ := IID/V D|T : λx.leftonto(x) Fdim7 GD/CD|T

Dim-III. X◦ := V IID/IIID|T : λx.leftonto(x) A♭dim7 GD/CD|T

Dim-bII. X◦ := ♭V ID/♭IID|T : λx.leftonto(x) Bdim7 GD/CD|T

Pass-I. X◦ := IT/IT : λx.x Cdim7 CT/CT

X◦ := ID/ID : λx.x Gdim7 GD/GD

Pass-VI. X◦ := V IT/V IT : λx.x Adim7 CT/CT

X◦ := V ID/V ID : λx.x Edim7 GD/GD

Pass-bV. X◦ := ♭V T/♭V T : λx.x G♭dim7 CT/CT

X◦ := ♭V D/♭V D : λx.x D♭dim7 GD/GD

Pass-bIII. X◦ := ♭IIIT/♭IIIT : λx.x E♭dim7 CT/CT

X◦ := ♭IIID/♭IIID : λx.x B♭dim7 GD/GD

Aug-bII. X7 := ♭V ID/♭IID|T : λx.leftonto(x) Baug GD/CD|T

Aug-VI. X7 := IIID/V ID|T : λx.leftonto(x) E♭aug GD/CD|T

Colour-IVf. X(m) := V T/V T : λx.x F CT/CT

Colour-IVb. X(m) := V T\V T : λx.x F CT\CT

Colour-IIf. X(m) := ♭V IIT/♭V IIT : λx.x Dm CT/CT

Colour-IIb. X(m) := ♭V IIT\♭V IIT : λx.x Dm CT\CT

Dom-IVm. Xm := IID/V T : λx.leftonto(x) Fm6 GD/CT

Figure 14: The lexicon of the jazz grammar. Each line represents a lexical schema which may be used to interpret

a chord. Each schema consists of a class of chord types it may interpret, a syntactic type and a logical form. For

each schema, a typical example is given of a chord in the key of C that might receive this interpretation, and the

syntactic type of the category it would be assigned.
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Gm7 Cm7 B7 B♭7 E♭6

GD/CD|T CD/FD|T FD/B♭D|T B♭D/E♭D|T E♭T
>B

GD/FD|T

>B

GD/B♭D|T

>B

GD/E♭D|T

>

GD–ET

Figure 15: CCG derivation, including a representation of the harmonic ‘semantics’—the structure of harmonic

expectations and resolutions.

X/Y : f Y/Z : g ⇒ X/Z : λx. f (g(x))
Backward (<B)

X\Y : g Z\X : f ⇒ Z\Y : λx. f (g(x))

The coordination rule combines unresolved ca-

dences to behave as a single unresolved cadence. The

two cadences are required to be of the same harmonic

functional type—either authentic (dominant function)

or plagal (subdominant function). The logical form of

the result (not shown in the rule here) is a function that

will be applied to the resolution and represents both ca-

dences resolving to the same point. See the appendix

for a formal definition.

Coordination (&):

XF/Y ZF/Y ⇒ XF/Y F ∈ {D,S}
The trivial development rule joins together fully re-

solved passages, building an interpretation of a whole

piece out of its constituent cadences. Its semantics (also

found in the appendix) is simply the concatenation of

the two constituents. Thus, a piece of music is analysed

as a sequence of expectation-resolution structures and

no structure is analysed between these fragments (cf.

Rohrmeier, 2011).

Development (dev):

V –W X–Y ⇒ V –Y

This is a permissive rule: it permits any two consec-

utive passages interpreted individually as harmonically

stable to be conjoined, regardless of key. Such passages

include resolved cadences and individual tonic chords.

Since different modulations are treated identically in the

semantics and there is no reason to suppose that any re-

mote modulation, however rare, is impermissible, we

do not use the syntactic component of the grammar to

put any restrictions on modulation. Statistical prefer-

ences are captured by statistical parsing models such as

the one discussed below.

An example derivation using all four rules is shown

in figure 16. It is shown with its semantics in the ap-

pendix.

7 Statistical Parsing Models

Just as with natural language parsing, the lexical am-

biguity of interpretation of chord sequences, due here

largely to the range of substitutions covered by the

grammar, prohibits exhaustive parsing to deliver ev-

ery syntactically well-formed interpretation. More-

over, we need a way to distinguish the most plausi-

ble among a huge number of possible interpretations.

It is usual in NLP to use statistical models based on

a corpus of hand-annotated sentences to rank possible

interpretations (supervised models). Such techniques

can be used to speed up parsing by eliminating ap-

parently improbable interpretations early in the pro-

cess. Bod (2002), Honingh and Bod (2005), Temperley

(2007) and Marsden (2010) have shown that statistical

techniques used in NLP can be applied to chord se-

quence parsing and other tasks for other genres (such

as folk songs). This paper shows that such methods can

be extended to the present more harmonically demand-

ing musical domain.

7.1 Jazz Corpus

To train our statistical models, we have constructed a

small corpus of jazz chord sequences. The sequences

are taken from lead sheets standardly used by jazz per-

formers. In the interests of consistent annotation, we

excluded certain sequences whose analysis we were un-

certain of, either because they included rare ambigu-

ous modal substitutions, or because they seemed to lie

outside the rather mainstream jazz idiom we sought to

capture (one regretted example was Thelonious Monk’s
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CM7 FM7 F♯φ7 B7♭9 Em7 A7 Dm7 A7 Dm7 A♭7 Gm7 Dm7 G7 CM7

CT CT \CT F♯D/BD|T BD/ED|T ED/AD|T AD/DD|T DD/GD|T AD/DD|T DD/DD DD/GD|T GD/CD|T DD/GD|T GD/CD|T CT

< >B >B >B

CT F♯D/ED|T AD/DD|T DD/CD|T

>B >B

F♯D/AD|T AD/GD|T

>B

F♯D/DD|T

>B

F♯D/GD|T

&

F♯D/GD|T

>B

F♯D/CD|T

&

F♯D/CD|T

>

F♯D–CT

dev

CT

Figure 16: Syntactic derivation of a long extended cadence from Alice in Wonderland using all rules. Logical forms are omitted. The same example is

shown with its semantics in the appendix.
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Epistrophy). The focus of the present approach is on

the rather uncontentious harmonic structures described

above. We believe that similar syntactic grammars

could be defined for genres incorporating a wider range

of harmonic expectations, a belief which is encouraged

by the work of Rohrmeier (2011), which applies a very

similar grammar to ours to a range of genres.

Every chord has been annotated by a single annota-

tor with a mnemonic code representing a category from

the lexicon of the jazz grammar shown in figure 14.

Due to the small number of rules used by the grammar,

the addition of parentheses surrounding coordinated se-

quences is sufficient to implicitly define a unique tonal

space analysis of every sequence. We do not claim

that these are the only possible analyses in every detail,

only that they are musically coherent and consistent.

The corpus consists of 76 annotated sequences, totalling

roughly 3,000 chords. It is available to download from

http://jazzparser.granroth-wilding.co.uk/.

7.2 Parsing Models

Hockenmaier and Steedman (2002) adapted the gen-

erative probabilistic parsing models of probabilistic

context-free grammars (PCFG) to CCG. Using a cor-

pus of parsed sentences, generative probability distribu-

tions are estimated for expansions at internal nodes in

the derivation tree—steps of the derivation where cat-

egories are combined to interpret a larger span. The

distributions are used to estimate a probability for any

full derivation tree and hence of the corresponding har-

monic analysis. If multiple full parses are found, they

can be ranked according to the probabilities assigned

by the model. In evaluating the parser, we will always

choose the single most probable interpretation.

In our experiments, we use a direct adaptation of the

model of Hockenmaier and Steedman (2002) to parse

chord sequences. We refer to this model as PCCG.

During parsing, a probability is assigned composition-

ally to every derived category using the parsing model.

(See Hockenmaier and Steedman, 2002 for details of

the model.) A beam is applied to every internal node

at which multiple possible interpretations are found: all

but the most probable derivations are removed, reducing

the time the parser needs to spend exploring unpromis-

ing partial derivations.

7.3 Adaptive Supertagging

This beam search parsing strategy permits practical

parsing of chord sequence inputs despite the high level

of lexical ambiguity in the grammar. However, parsing

speed can be further increased using another statistical

technique from natural language parsing.

Supertagging is a technique, related to part-of-speech

tagging, used for parsing with lexicalized grammars

like CCG (Srinivas and Joshi, 1994). Probabilistic

sequence models, using only statistics about short-

distance dependencies, are employed to choose full

CCG categories (rather than parts of speech) from the

lexicon for each word. In general, the choice of cate-

gory, representing for us most of the interpretation of

a chord, depends on analysis of more distant parts of

the sequence, that is on long-distance dependencies. In

practice, short distance statistics can usually quite reli-

ably rule out at least the least probable interpretations.

A bad choice of categories could make it impossible

to parse the sequence. The adaptive supertagging algo-

rithm (Clark and Curran, 2007) allows categories con-

sidered less probable by the supertagger to be used if

necessary. First, the supertagger assigns a small set of

most probable categories to each word and the parser

attempts to find a full parse with these categories. If it

fails, the supertagger supplies some more, slightly less

probable, categories and the parser tries again. This is

repeated until the parser succeeds or gives up (for ex-

ample, after a set number of iterations).

Many types of probabilistic sequence model can be

used as a supertagging model. We use a hidden Markov

model (HMM) in which states represent categories, de-

composed into a choice of lexical schema Sch, from the

lexicon of table 14, and pitch SR. To avoid problems of

data sparsity, the transition distribution of the HMM is

modelled as a choice of schema, conditioned on the pre-

vious schema, and a choice of root pitch, conditioned on

the schema and the previous root pitch:

Ptr(Schi,SRi|Schi−1,SRi−1) =

P(Schi|Schi−1)×P(δ (SRi,SRi−1)|Schi) (1)

The function δ (x,y) ∈ {0, . . . ,11} represents the dif-

ference between two pitch classes x and y. This has the

effect of making the model generalize over keys.

The input given to the supertagger is a sequence of

chord labels, of the sort used on jazz lead sheets, such

as CM7 and B♭7. These are decomposed into a pitch

class CR (C, B♭) and a chord type CT (M7, 7). The
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emission distribution of the HMM is defined to be 0

for all schema roots that do not match the chord root,

conditioning the chord type just on the lexical schema

of the state.

Pem(CTi,CRi|Schi,SRi) =
{

P(CTi|Schi) if CRi = SRi

0 otherwise
(2)

The supertagging model is trained using maximum

likelihood estimation on the annotated categories from

the corpus described above. The limited size of the cor-

pus means that it does not contain enough data to train

models much more complex than this. Some initial ex-

periments with higher-order Markov models (n-gram

models) suggest that they do not perform any better than

the HMM we use here when trained on this small cor-

pus.

We compare a system using the PCCG parsing

model to a second using the supertagger with the adap-

tive supertagging algorithm to narrow down the choice

of lexical categories available to the parser. The parser

applies a beam just as in PCCG. We call this model

ST+PCCG.

Using both models, we allow the parser a fixed

amount of time to parse a particular sequence before

giving up. We set this time to five hours and with

both systems almost all parses finished well within that

time.5

7.4 Baseline Model

In an attempt to quantify the contribution made by re-

stricting interpretations to those that are both syntac-

tically well-formed under the jazz grammar and likely

under the jazz parsing model, we have constructed an

alternative baseline model which assigns tonal space in-

terpretations without using the grammar. This baseline

uses an HMM very similar to that described above as a

supertagger model, which directly assigns a tonal space

point to each chord, instead of assigning categories to

chords and parsing to derive a tonal space path.

A reasonable first approximation to an analysis can

be derived by assuming that no chord substitutions are

used and that the tonal space path proceeds by the

smallest possible steps, according to the Manhattan dis-

tance metric. There are two reasons why deviations

5Mean CPU time was 9:22 min (s.d. 33:32) with the supertagger,

and 34:17 (s.d. 75:23) without, running on a 2.6GHz AMD Opteron

6212 CPU.
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Figure 17: Tonal space analysis for the coordinated ca-

dence G7 E7 A7 Dm7 G7 C. The initial G7 (square) is

followed not by the closest point that equal tempera-

ment maps to E (dashed), but a more distant one, as

required for the two G7s resolve to share their resolu-

tion.

from the naive path occur. First, the correct disam-

biguation of the equal temperament note may not be

the point closest to the previous, as happens at points

of coordination, where the resolutions of two cadences

are constrained to be the same. An example is shown in

figure 17. Second, there may be a substitution (like the

tritone substitution), meaning that the surface chord’s

root is not the root of the chord in the analysis.

The HMM’s state labels consist of three values. The

first, the substitution coordinate, Sub, denotes the pitch

class of the chord root after accounting for substitution,

but before projecting from the toroidal space of equal

temperament onto the full tonal space. For example,

a state with Sub = G could be associated with a D♭
chord to interpret it as a tritone substitution.6 The sec-

ond value, the block coordinate, Blk, is a coordinate that

denotes the relationship in the tonal space between the

actual point in the analysis and the point nearest to the

previous point on the path after accounting for substitu-

tion. That is, it accounts for disambiguation of enhar-

monically equivalent points (e.g. C♯ and D♭). Although

an infinite number of block coordinates is possible, in

practice only a few are commonly seen and the HMM

only includes those states that it observes in the training

data. The third value is the harmonic function F of the

chord—T, D or S.

The HMM’s transition distribution is decomposed as

follows. The harmonic function is chosen first, condi-

tioned on the previous harmonic function. Then a value

is chosen for the vector from the previous tonal space

6Strictly speaking, this would only be a tritone substitution if it

also had a dominant function.
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coordinate, conditioned on the choice of harmonic func-

tion. It is possible to compute the transition probabil-

ity between any two states on the basis of this vector

since between them the substitution coordinate of the

first state and the substitution and block coordinates of

the second are sufficient to compute the vector travelled

between the two points. This way of constructing the

transition distribution makes it insensitive to transposi-

tion.

Ptr(Subi,Blki,Fi|Subi−1,Blki−1,Fi−1) =

P(Fi|Fi−1)×
P(vector(Subi,Subi−1,Blki)|Fi) (3)

The emission distribution is decomposed as follows.

The distribution is once again made insensitive to abso-

lute pitch by modelling the difference between the pitch

class after accounting for substitution and the observed

chord root, once again using the δ (x,y) function. The

substitution is chosen conditioned on the function of the

state. Then the chord type is chosen, conditioned on

both the substitution and the function.

Pem(CTi,CRi|Subi,Blki,Fi) =

P(δ (CRi,Subi)|Fi)×
P(CTi|δ (CRi,Subi),Fi) (4)

The baseline model is trained in the same way as the

supertagger, only this time the training data is chord se-

quences paired with their annotated tonal space paths.

We refer to the baseline model as HMMPATH. PCCG

and ST+PCCG will completely fail to assign a path in

cases where a full parse cannot be found. This may

be because the beam removes all derivations that per-

mit a grammatical interpretation of the full sequence,

or, in the case of ST+PCCG, because the supertagger

fails to suggest a set of lexical categories from which a

full interpretation can be derived. HMMPATH will as-

sign some path to any sequence, since it is not limited

to returning grammatical interpretations.

8 Experiments

8.1 Evaluation

We evaluate all models on the basis of the “one-best”

tonal space path to which they assign highest probabil-

ity. Paths are first transformed from a list of tonal space

coordinates to a list of vectors between adjacent points.

This means that a path which makes an incorrect jump

(for example, to an enharmonic equivalent of the cor-

rect point) is only penalized for that mistake and not for

all subsequent points. Each point also has an associated

harmonic function, which is included in the evaluation.

We align this path optimally with the gold-standard

tonal space path from the annotated corpus (pre-

processed in the same way) using the Levenshtein algo-

rithm (Wagner and Fischer, 1974) for efficiently finding

the optimal alignment between the elements of two se-

quences. We report precision, recall and f-score of the

aligned paths. Precision is defined as the proportion of

points returned by the model that correctly align with

the gold standard. Recall is the proportion of points

in the gold standard that are correctly retrieved by the

model. F-score is the harmonic mean of these two mea-

sures.

P = Aligned/(Aligned+ Inserted)

R = Aligned/(Aligned+Deleted)

F = 2×PR/(P+R)

Since the points of the path carry two pieces of informa-

tion, the coordinate (now the step vector) and a chord

function, we allow a score of 0.5 to be assigned to a

correct alignment of only one of these and use a cost

function in the Levenshtein algorithm that reflects this.

Without this modification, a model that was, for exam-

ple, very good at recognizing substitutions, but poor at

identifying which chords were tonics would score very

badly on precision and recall, since no alignment would

be counted where only the coordinate was correct.

We shall refer to this metric as tonal space edit dis-

tance (TSED).

8.2 Model Comparison

All models were trained on the jazz corpus described

above, containing 76 fully annotated sequences. It is

common to divide a corpus into a training set, used to

train models, and a test set, for experimental evalua-

tion. Often a further division of a development set is

used to obtain intermediate experimental results or de-

termine model hyperparameters. Since the small size of

the corpus prohibits holding out a test set, we use 10-

fold cross-validation here. Each experiment is run 10

times, with 9
10

of the data used to train the model and

the remaining 1
10

used to evaluate the trained model.

This means that all data is used for evaluation, but no

model is tested on data that it was trained on. We report

the results combined from all partitions. Since the same
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Model P (%) R (%) F (%) Cov. (%)

HMMPATH 77.44 84.87 80.98 100

PCCG 92.29* 88.78 90.50* 97.37

ST+PCCG 90.18* 92.79* 91.46* 100

Table 1: Evaluation of each model’s prediction using 10-fold cross-validation on the jazz corpus. Each model is

scored using TSED (see section 8.1), reporting precision (P), recall (R), f-score (F) and coverage (Cov.), all per-

centages. The best results are bold and * marks significant improvements over the baseline (p < 0.05), measured

by 100,000 iterations of stratified shuffling.

dataset has been used, for example, in preliminary tri-

als of higher-order HMMs (see section 7.3), this experi-

ment should be thought of as equivalent to an evaluation

on a development set, rather than on completely unseen

data. There is therefore some danger of overfitting.

9 Results

The results of the three experiments are reported in ta-

ble 1. Differences between systems are tested for statis-

tical significance using Bikel’s stratified shuffling test7,

with 100,000 random shuffles of the results from indi-

vidual chord sequences. Results are reported as statisti-

cally significant for p < 0.05.

Table 1 shows that ST+PCCG and PCCG produce

high-precision results. This is because, unlike the base-

line HMMPATH, they can only produce results that are

permitted by the grammar and fail when they can find

no such result. The corpus used here for training and

evaluation includes only sequences to which it was pos-

sible to assign a harmonic interpretation using the gram-

mar. The results reported for the models that use the

grammar are, therefore, higher than would be expected

on real-life chord sequences. HMMPATH suffers from

relatively low precision, but nevertheless succeeds in re-

covering a high proportion of the annotated harmonic

relations, as measured by the overall f-score. If the

parser were applied to a larger test set covering a less

constrained musical domain, it would suffer from lack

of coverage. In such a case, HMMPATH could be used in

a simple form of backoff, providing an analysis were the

parser fails. We could expect this to reduce the model’s

precision slightly, but improve its recall. The result-

ing ST+PCCG+HMMPATH model is robust in that it

is guaranteed always to produce some tonal space in-

terpretation, but in many cases benefits from the high

7http://www.cis.upenn.edu/~dbikel/software.html,

accessed Oct 2012.

precision of the parser.

The three key conclusions to draw from these results

are as follows. First, they show that HMMPATH is a

reasonable model to use as a baseline for the task and

to back off to when no grammatical result can be found.

Experiments on a larger data set would without doubt

suffer more severely from a lack of coverage and HMM-

PATH could be used as suggested here or in another,

less aggressive form of backoff. Second, the results

show that the use of a grammar to constrain the inter-

pretations predicted by an HMM improves substantially

over the purely short-distance information captured by

the baseline HMMPATH model. Third, they show that

the use of the AST algorithm with a simple Markovian

supertagging model succeeds in speeding up the parser

by a large factor (roughly a factor of 4), with no re-

duction in accuracy. This can be thought of as using

a Markovian model to suggest some interpretations of

the chords, but building the final analysis by enforc-

ing the structural constraints encoded in the grammar.

Although this strategy is not essential for the present

task, it is likely to be important for tasks requiring larger

models or relying on accurate parsing under time con-

straints, when the gain in speed offered by supertagging

will be critical.

10 Conclusion

The parser described above uses a formal grammar of a

kind that is widely used for NLP, and a statistical pars-

ing model of a kind typically used in wide-coverage

natural language parsers, to map chord sequences onto

their underlying harmonic analysis in the tonal space

of Longuet-Higgins (1962a). The jazz harmony corpus

we used is small, but experience with wide-cvoverage

CCG parsing for NLP suggests that these techniques

will scale to larger datasets and other musical domains

(Clark and Curran, 2007; Auli and Lopez, 2011).
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The parsing model is built using supervised learn-

ing over a small corpus of jazz chord sequences, hand-

annotated with harmonic analyses. The fact that a

grammar-based musical parser using a simple statisti-

cal parsing model trained on a small amount of labeled

data is more accurate than a baseline Markovian model

may be taken as further evidence suggesting that mu-

sic and language have a common origin in distinctively

human cognition.

The baseline model we have described is based only

on statistics over a short window of context (bigrams).

In most cases where the parser fails to find a full inter-

pretation of a chord sequence, it does successfully iden-

tify large cadences, but cannot find an interpretation of

certain difficult chords. One possible way of construct-

ing a coherent analysis in difficult cases would be to

identify high-confidence partial analyses produced by

the parser and back off to a less constrained model, such

as HMMPATH, only for those passages that proved diffi-

cult for the grammar-based model. This appears to be a

reasonable emulation of what a human listener does on

encountering a confusing passage of music, picking up

the thread as soon as an easily identifiable tonal centre

or cadence is heard.

We have described models to analyse sequences of

chords expressed in the form of chord symbols. Such

sequences assume a certain amount of preprocessing,

including division into segments of constant harmony,

selection of prominent notes and some analysis of chord

root. A natural extension would be to construct a model

incorporating these tasks into the analysis process, ac-

cepting note-level input (in MIDI encoding, for exam-

ple) and suggesting possible interpretations in the way

the supertagger component of our parsing model does.

Recent work, not reported here, suggests that the ap-

proach presented here will generalize to this more diffi-

cult task.
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Appendix: Tonal Space Semantics

We introduce in the present paper an adaptation of CCG

for grammars of tonal harmony. The formalism acts as

a mechanism to map a surface – chords, in our case –

onto a semantic interpretation – a tonal harmonic anal-

ysis. Each syntactic category is coupled with a logical

form and, as syntactic categories are combined during

parsing, a logical form representing the full harmonic

analysis is built up.

We mentioned above that a logical form is con-

structed to represent a harmonic analysis in terms of

movements about Longuet-Higgins’ tonal space, but

omitted the details of the representation we use. Here

we set out the details of a representation suitable for our

tonal semantics.

Tonic Semantics

The semantics of a tonic is a point in the tonal space.

It is underspecified – it only specifies a point within an

enharmonic block (see figure 18). It is therefore a co-

ordinate between 〈0,0〉 and 〈3,2〉 and each coordinate

denotes a different infinite set of positions in the space.

Crucially, however, in the context of a full harmonic

analysis, the coordinate represents a single point in the

space, as we will see later in this appendix.

A single tonic chord receives as its logical form a

single-element list containing such a coordinate. A log-

ical form of this sort is associated with atomic lexical

categories, such as both the occurences of CT in fig-

ure 11.

Cadence Semantics

The semantics of a cadence step is a predicate repre-

senting a movement in the tonic space. An extended ca-

dence is interpreted as the recursive application of each

movement to its resolution.

Authentic cadences – left steps – use the leftonto

predicate and plagal cadences – right steps – the

rightonto predicate. For example, a single dominant

chord resolving to a tonic 〈0,0〉 would receive the log-

ical form leftonto(〈0,0〉), whilst a secondary dominant,

resolving to a dominant, resolving to the tonic would

receive leftonto(leftonto(〈0,0〉)).
We define leftonto (and likewise rightonto) as being

subject to a reduction when applied to a list, as in the

case of a tonic resolution, as follows:

leftonto([X0,X1, ...])⇒ [leftonto(X0),X1, ...]

Figure 18: Enharmonic blocks at the centre of the

space. Each position within these 4x3 blocks is equated

by equal temperament with the same position within ev-

ery other block.

D7 G7 C

λx.leftonto(x) λx.leftonto(x) [〈0, 0〉]
>

[lefonto(〈0, 0〉)]
>

[leftonto(leftonto(〈0, 0〉))]

Figure 19: Recursive interpretation of an extended au-

thentic cadence, showing logical forms, but omitting

syntactic types.

The example in figure 19 shows a two-step cadence –

the familiar D7 G7 C. The derivation shows the combi-

nation of the semantics of each chord into the semantics

for the sequence.

Throughout this chapter, derivations like this are

written with the syntactic part of each syntactic

type/logical form pair omitted. Naturally, these are

all derivations that would be permitted by the syntac-

tic types associated with these logical forms under the

combinatory rules described in section 6.2 in the main

article.

The recursive application of multiple cadence steps

can be combined ahead of time, before their applica-

tion to their resolution, using the composition operator,
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D7 G7 C

λx.leftonto(x) λx.leftonto(x) [〈0, 0〉]
>B

λx.leftonto(leftonto(x))
>

[leftonto(leftonto(〈0, 0〉))]

Figure 20: Recursive interpretation of an extended ca-

dence, derived using the function composition combi-

nator to combine the unresolved cadence before its res-

olution is encountered.

C F C

λx.x λx.x [〈0, 0〉]
>

[〈0, 0〉]
>

[〈0, 0〉]

Figure 21: C F C colouration of a tonic chord, inter-

preted as contributing nothing to the logical form.

associated with the composition combinator.

f ◦g ≡ λx. f (g(x))

Figure 20 shows again the interpretation seen in fig-

ure 19, now produced by a derivation that uses the com-

position combinator.

Colouration Semantics

The lexicon includes some categories for interpreting

colouration chords, which contribute nothing much to

the functional structure of the harmony, but spice up

the realisation. Accordingly, these are given an empty

semantics (that is, the identity function), which simply

ignores them.

A typical example of this is the sequence C F C, of-

ten played during long passages of a tonic chord (here

C). This can be thought of as a form of plagal cadence

and a fine grained analysis might treat it as such. How-

ever, for most analysis purposes we wish to ignore this

very brief excursion from the tonic. Figure 21 shows an

example derivation using this empty semantics.

In many cases, we do not even return to the tonic

after our excursion, continuing with a cadence straight

after the F. This is the purpose of the backward-facing

colouration lexical category (Colour-IVb in figure 14)

and the semantics ignores the F in the same way.

C D7 G7 C

[〈0, 0〉] λx.leftonto(x) λx.leftonto(x) [〈0, 0〉]
>

[lefonto(〈0, 0〉)]
>

[leftonto(leftonto(〈0, 0〉))]
dev

[〈0, 0〉, leftonto(leftonto(〈0, 0〉))]

Figure 23: A single tonic chord combined with a subse-

quent resolved recursive cadence using the development

rule.

Development Semantics

The development combinatory rule combines se-

quences of tonic passages and resolved cadences into

larger units, ultimately into a whole piece of music. Ev-

ery logical form introduced so far has been a single-

item list. The behaviour of the development rule’s se-

mantics is rather trivial. It simply concatenates its two

arguments: the syntax ensures these are lists. The ex-

ample in figure 22 shows a pair of resolved cadences

being combined in this way. Figure 23 shows a deriva-

tion in which a single tonic combines with a subsequent

resolved cadence.

Coordination Semantics

Logical forms representing unresolved cadences can be

coordinated to share their eventual resolution. This is

carried out by the special musical coordination combi-

nator. The semantics of this combinator simply con-

joins the cadence logical forms using the ∧ operator.

Note that, unlike in the logical semantics of natural lan-

guage, this conjunction operator must preserve the or-

der of its arguments.

A∧B 6≡ B∧A

We can also reduce brackets to reflect the associativity

of the conjunction operator.

A∧B∧C ≡ (A∧B)∧C

≡ A∧ (B∧C)

A∧ (B∧C)⇒ A∧B∧C

(A∧B)∧C ⇒ A∧B∧C

The functions that denote cadences are simply con-

joined by ∧, as shown in figure 24.
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D7 G7 D7 G7

λx.leftonto(leftonto(x)) λx.leftonto(leftonto(x))
&

λx.leftonto(leftonto(x)) ∧ λx.leftonto(leftonto(x))

Figure 24: Two unresolved cadences combined using

the coordination combinator.

D7 G7 D7 G7 D7 G7 C

λx.L(L(x)) λx.L(L(x)) λx.L(L(x)) [〈0, 0〉]
&

λx.L(L(x)) ∧ λx.L(L(x))
&

λx.L(L(x)) ∧ λx.L(L(x)) ∧ λx.L(L(x))
>

[(λx.L(L(x)) ∧ λx.L(L(x)) ∧ λx.L(L(x)))(〈0, 0〉)]

Figure 26: More than two unresolved cadences can be

combined using the coordination combinator.

The result is treated as a function that can be applied

to its resolution. It reduces under application to a list in

the same way as leftonto and rightonto. An example is

shown in figure 25. Note that the individual cadences

are not actually applied to the resolution. More than

two cadences can be coordinated to share the same res-

olution, as shown in figure 26. (The predicate leftonto is

henceforth abbreviated to L to save space.)

The result of a coordination (once applied to its res-

olution) can become the recursive resolution of a prior

cadence step (as in figure 27). However, this logical

form will result in the same tonal space path as that

which would have been produced by composing the A7

with the following D7 G7 before coordinating, shown in

figure 28.

We therefore define the following equivalence in the

logical forms and by convention reduce the left-hand

side form to the right-hand side wherever possible.

A((B∧ ...)(C))⇒ (A◦B∧ ...)(C)

Extracting the Tonal Space Path

The logical forms that come out of the above seman-

tics represent certain constraints on paths through the

tonal space. Although the tonic points are ambiguous

in the representation, every point of a path can be in-

ferred from a full logical form.

Let us first examine the constraints encoded in the

various types of predicate. The most obvious constraint

A7 D7 G7 D7 G7 C

λx.L(x) λx.L(L(x)) λx.L(L(x)) [〈0, 0〉]
&

λx.L(L(x)) ∧ λx.L(L(x))
>

[(λx.L(L(x)) ∧ λx.L(L(x)))(〈0, 0〉)]
>

[L((λx.L(L(x)) ∧ λx.L(L(x)))(〈0, 0〉))]

Figure 27: A recursive dominant chord may be applied

to the result of using the coordination combinator. (C.f.

figure 28.)

A7 D7 G7 D7 G7 C

λx.L(x) λx.L(L(x)) λx.L(L(x)) [〈0, 0〉]
>B

λx.L(L(L(x)))
&

λx.L(L(L(x))) ∧ λx.L(L(x))
>

[(λx.L(L(L(x))) ∧ λx.L(L(x)))(〈0, 0〉)]

Figure 28: An alternative derivation of the cadence in

figure 27, resulting in an interpretation identical in the

tonal space, leading to the definition equivalence of the

two logical forms.

is on the point created by a left (or right) movement, de-

noted in the semantics by leftonto (or rightonto) predi-

cates. In leftonto(p), the point at which the movement

begins must be one step in the grid to the right of the

first point of the path p. If the point (x,y) is fully spec-

ified, the whole path leftonto(leftonto((x,y))) is there-

fore also unambiguous.

Two cadences that share a resolution through coordi-

nation are constrained to end at the same point, since

their points are constrained relative to their shared res-

olution.

There is no obvious constraint between items in the

top-level list of tonics and resolved cadences. We as-

sume that a step is made to the nearest (most closely

tonally related) point that satisfies all other constraints.

For example, take the following two logical forms:

1. [〈0,0〉, leftonto(leftonto(〈0,0〉))]

2. [〈0,0〉, leftonto(leftonto(leftonto(〈0,0〉)))]

The tonal space paths for these logical forms are

shown in figure 29. The start of the second item in path

1 is dependent, ultimately, on the cadence resolution

〈0,0〉. But this point is underspecified: we can choose
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for it any of the infinite points that lie at 〈0,0〉 within

their enharmonic block. Given an arbitrary choice of

the first item’s point at the central (0,0), we will choose

the same point for the end of the second item, since it

puts the start of the second item (now (2,0)) as close as

possible to (0,0). A choice of (−4,1) for the end point

would also have been permitted by other constraints,

but would have resulted in a larger jump between the

two path fragments.

In path 2, however, the second item begins at a point

further from its ending. In this case we will choose

(−1,1) as the start point for the second item by setting

the 〈0,0〉 at its end to be at (−4,1).
Note that the choice of the first point on the path is

unimportant: two paths identical in form, but occurring

at different positions in the space can be considered

equivalent, since the only difference between them is

their absolute pitch and we (uncontraversially) consider

precise absolute pitch not to be pertinent to musical se-

mantics. In both the above examples, we could have

chosen (4,−1), for instance, as the coordinate 〈0,0〉 at

the start and the resulting paths would be considered

identical to those we derived.

A simple algorithm can be constructed by means of

a recursive transformation of the logical predicates to

produce the flat tonal space path represented by a logi-

cal form produced by parsing. As well as demonstrat-

ing that any logical form is interpretable as an analysis

in the tonal space, there are circumstances in which this

transformation is of use. In section 8.1 in the main arti-

cle we use path similarity between an output interpreta-

tion and the gold standard as an evaluation metric. The

paths we compare are those produced by this algorithm.

The Extended Example: Full Analysis

As a full, real life example, the derivation in figure 30

shows the long extended cadence from Alice in Wonder-

land of which a purely syntactic derivation was shown

in figure 16, now including logical forms.
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D7 G7 C G7 C

λx.leftonto(x) λx.leftonto(x) [〈0, 0〉] λx.leftonto(x) [〈0, 0〉)]
> >

[lefonto(〈0, 0〉)] [lefonto(〈0, 0〉)]
>

[leftonto(leftonto(〈0, 0〉))]
dev

[leftonto(leftonto(〈0, 0〉)), lefonto(〈0, 0〉)]

Figure 22: A pair of fully resolved cadences combined using the trivial development rule.

D7 G7 D7 G7 C

λx.leftonto(leftonto(x)) λx.leftonto(leftonto(x)) [〈0, 0〉]
&

λx.leftonto(leftonto(x)) ∧ λx.leftonto(leftonto(x))
>

[(λx.leftonto(leftonto(x)) ∧ λx.leftonto(leftonto(x)))(〈0, 0〉)]

Figure 25: The two unresolved cadences that were combined in figure 24 are combined with the resolution ex-

pected by both using the function application combinator.

Figure 29: The tonal space paths corresponding to two logical forms. [〈0,0〉, leftonto(leftonto(〈0,0〉))] (circles)

begins at C, (0,0), jumps to D, (2,0), and left-steps back to C. [〈0,0〉, leftonto(leftonto(leftonto(〈0,0〉)))] (squares)

also begins at C, but jumps to A, (−1,1), and left-steps to a different C, (−4,1).
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CM7 FM7 F♯φ7 B7♭9 Em7 A7 Dm7 A7 Dm7 A♭7 Gm7 Dm7 G7 CM7

CT :
[〈0, 0〉]

CT \CT

: λx.x

F♯D/BD|T

: λx.L(x)
BD/ED|T

: λx.L(x)
ED/AD|T

: λx.L(x)
AD/DD|T

: λx.L(x)
DD/GD|T

: λx.L(x)
AD/DD|T

: λx.L(x)
DD/DD

: λx.x

DD/GD|T

:
λx.L(x)

GD/CD|T

: λx.L(x)
DD/GD|T

: λx.L(x)

GD/CD|T

:
λx.L(x)

CT :
[〈0, 0〉]

< >B >B >B

CT : [〈0, 0〉] F♯D/ED|T : λx.L(L(x)) AD/DD|T : λx.L(x) DD/CD|T : λx.L(L(x))
>B >B

F♯D/AD|T : λx.L(L(L(x))) AD/GD|T : λx.L(L(x))
>B

F♯D/DD|T : λx.L(L(L(L(x))))
>B

F♯D/GD|T : λx.L(L(L(L(L(x)))))
&

F♯D/GD|T : (λx.L(L(L(L(L(x))))) ∧ λx.L(L(x)))
>B

F♯D/CD|T : λy.(λx.L(L(L(L(L(x))))) ∧ λx.L(L(x)))(L(y))
&

F♯D/CD|T : (λy.(λx.L(L(L(L(L(x))))) ∧ λx.L(L(x)))(L(y)) ∧ λx.L(L(x)))
>

F♯D–CT : [(λy.(λx.L(L(L(L(L(x))))) ∧ λx.L(L(x)))(L(y)) ∧ λx.L(L(x)))(〈0, 0〉)]
dev

CT : [〈0, 0〉, (λy.(λx.L(L(L(L(L(x))))) ∧ λx.L(L(x)))(L(y)) ∧ λx.L(L(x)))(〈0, 0〉)]

Figure 30: Semantic derivation of the extended cadence from Alice in Wonderland.
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