
Harmonic Analysis of Jazz MIDI Files Using

Statistical Parsing

Music and Machine Learning Workshop, Edinburgh

Mark Granroth-Wilding and Mark Steedman

30 June 2012

I took part in the 5th International Workshop on Machine Learning and
Music, 2012. This is the talk I gave, now in article form (including the slides
from the talk).

Abstract

Harmonic analysis involves identifying hierarchical structure, similar
to that found in the syntax and semantics of language, in the harmonic
progressions underlying tonal melodies. In previous work, we have used
grammar-based parsing, with related machine-learning techniques, for au-
tomatic harmonic analysis of jazz chord sequences.

We now turn to the harder task of harmonic analysis of jazz MIDI
performances using similar techniques. First, we evaluate a strict pipeline
approach: we use an HMM to perform chord recognition and our previous
system to analyze the output. Then, we use the chord recognizer to pro-
pose a chord lattice and analyze this using an adaptation of the previous
system.

Contents

1 Introduction 2

2 Harmonic Analysis 3

3 Parsing Chords 6

4 Parsing MIDI 9
4.1 Pipeline System . 12
4.2 Lattice System . 15

5 Conclusion 17

1

1 Introduction

In this article, I present our work on the application of statistical parsing tech-
niques from natural language processing (NLP) to music processing. I first
introduce our approach automatic harmonic analysis using a musical grammar
and I present some results from a system for harmonic analysis of chord se-
quences. Then I move on to the harder task of harmonic analysis of note data
and show some results from a couple of proof-of-concept systems on this task.

Introduction

• Hierarchical structure in music

• Metrical structure

• Harmonic structure

1

Introduction

• Hierarchical structure in music

• Metrical structure

• Harmonic structure

1

Several aspects of music are or-
ganised hierarchically. One exam-
ple is the metrical structures under-
lying rhythmic patterns (such as that
shown on top of the score above).
Another is the harmonic progressions
underlying melodies and polyphony
(a simple example can be seen above
the score to the right).

Identifying these structures is an
important part of understanding mu-
sic for a human listener and automat-
ically identifying them is useful for many music processing tasks. Our work
focuses on the automatic analysis of harmonic structure.

2

2 Harmonic Analysis

Harmonic Analysis

• Functional harmonic structure

• Tension-resolution patterns

• Dependency diagrams show functional structure:

C E7 A7 Dm7 G7 Dm7 D[7 C

dom dom dom

dom

dom dom

Harmonic analysis is the task of iden-
tifying the functional harmonic struc-
ture that underlies a piece of mu-
sic. This structure consists of pat-
terns of tension and resolution. We
can think of these patterns in terms of
tension-resolution dependencies be-
tween chords: that is, pairs of chords
in which the first raises a tension and
the second provides the resolution.

We can therefore use a representa-
tion similar to that used to represent
liguistic dependencies to express a harmonic analysis. An example dependency
graph can be seen here and I will come back to explain this in more detail
shortly.

Harmonic Analysis

• Chords classified as functioning as: dominant, subdominant or
tonic

• Dominant-tonic resolution

• Subdominant-tonic resolution

• Recursion

• Substitution

• Delayed resolution: coordination

G7 C

dom

F C

subdom

D7 G7 C

dom dom

D7 D[7 C

dom dom

D7 G7 D7 D[7 C

dom dom dom

dom

In our analyses, each chord is classified as functioning as a dominant, a
subdominant or a tonic. The most common type of tension-resolution pattern
is the dominant-tonic resolution. The resolution to a dominant-function chord is
found a perfect fifth below it (as in the G7 C example). The subdominant-tonic
pattern works in the same way, but with a different resolution (a perfect fourth
down, as in the F C example).

These relations are subject to recursion. The resolution of a dominant-
function chord can itself be a dominant-function chord, requiring in turn its
own resolution (see D7 G7 C).

3

The phenomenon of substitution occurs when a chord, in some particular
context, is replaced by another chord that serves the same harmonic function.
In the example shown here, the D[7 serves as a substitute for a G7 – the so-called
tritone substitution, common in jazz.

The structures get really interesting when the resolution of a tension chord
is delayed. Another sequence of tension-resolutions intervenes and the eventual
resolution is shared by the two structures. In the example, the G7 chord’s
resolution is delayed and eventually comes in the form of the C chord, which is
also the resolution to the D[7. We refer to this as coordination, by virtue of its
similarity to certain types of coordination in language.

Harmonic Analysis Dependency Graph

C E7 A7 Dm7 G7 Dm7 D[7 C

dom dom domdom

dom

dom

Resolutions as root nodes

Recursive dominants

Tritone substitution

Coordination

We can now return to the example graph we saw above and make a bit more
sense of it. Each final resolution (tonic) is marked as being connected to the
root of the graph, denoted by the downward arrows. There are several examples
of recursive dominant-function chords, a tritone substitution and a coordination
in this example.

4

Parsing

• Harmonic analysis:

C E7 A7 Dm7 G7 Dm7 D[7 C

dom dom dom

dom

dom dom

• Parsing language:

The princess kissed an unsuspecting frog

det subj

obj

det mod

?
?

To perform harmonic analysis, we are interested in taking an unstructured
musical signal – in this case a chord sequence, but it could equally be a note
stream or audio signal – and producing a structured interpretation. In NLP,
parsing is used to produce some structured analysis of an unstructured input,
such as the predicate-argument structure of a sentence. The obvious question
that arises, therefore, is:

To what extent can we apply parsing
techniques from NLP to the task of harmonic

analysis of music?

5

3 Parsing Chords

Combinatory Categorial Grammar

• Generative grammar formalism

• Lexicalized

• Transparent interface between syntax (structure) and
semantics (analysis)

• Harmonic CCG: variant of standard formalism

• Hand-built jazz grammar

• Induced statistical models

We tackle this problem using the gen-
erative grammar formalism Combi-
natory Categorial Grammar (CCG).
CCG is a lexicalized formalism: rich
information is encoded in syntactic
types that are associated with indi-
vidual words (or in our case chords)
and a small set of grammatical rules
is used to combine these into a full
interpretation. One of its attractive
features is that it provides a trans-
parent interface between the syntax
(that is, structure) and the semantics (the actual analysis we wish to produce).

We have developed a variant of the standard CCG formalism to express
the syntax of tonal harmony. Using this formalism, we have built by hand a
grammar aimed at interpreting the harmony of jazz standards. This grammar
may be supplemented by induced statistical models to assist with parsing.

Statistical Parsing

• Standard supervised statistical parsing models

• Parsing model: Hockenmaier & Steedman (2002)1

• “Supertagger” narrows parser’s search space: HMM

• Supervised training

CM7 F♯φ7 B7♭9 Em7 A7 Dm7 Gm7 Dm7 G7 CM7

CM7 F]φ7 B7[9 Em7 A7 Dm7 Gm7 Dm7 G7 CM7

dom dom dom dom dom dom dom

dom

1Generative models for statistical parsing with Combinatory Categorial
Grammar. ACL

We have applied standard supervised statistical models used for chart pars-
ing with CCG in NLP. Our input is a chord sequence. A parsing model is used
to guide the parser and rank the (usually numerous) interpretations it produces.
Our parsing model is identical to that of Hockenmaier & Steedman (2002).

Supertagging is a technique commonly used in NLP for statistical parsing
with lexicalized grammars. A sequence model is used to reduce the number of
lexical categories (interpretations of individual words) on the basis of a word’s

6

local context. The parsing model is then used to decide between the remaining
categories using higher-order statistics over the grammatical derivation. We use
an HMM as a model for a supertagger component.

The result of parsing is a harmonic analysis of the input of the sort that we
have seen above.

The parsing and supertagging models are trained in a supervised fashion.

Corpus

• Annotated training corpus

• Jazz chord sequences

• Full harmonic analysis annotated

• 74 sequences

• Cross-validation

We have constructed a small cor-
pus of annotated data for training
the models. The corpus consists of
chrod sequences of jazz standards,
each annotated with a gold-standard
harmonic analysis by a single annota-
tor. It contains 74 sequences. Since it
is so small, we have not kept a held-
out test set. Instead, the evaluation I
will present below is performed using
10-fold cross-validation over the full
set.

Parser Evaluation Metric

Dependency recovery

C E7 A7 Dm7 G7 Dm7 D[7 C

dom dom domdom dom

dom

C E7 A7 Dm7 G7 Dm7 D[7 C

dom dom domdom

Gold:

Parser:

Recall

Precision

F-score: F = 2PR
P+R

We evaluate the parser’s performance using a standard metric used to evalu-
ate dependency graphs in NLP: dependency recovery. Given a gold-standard
dependency graph and that output by the parser, we count up how many of
the annotated dependencies were recovered to compute recall and how many of
the recovered dependencies were in the annotations to compute precision. The
f-score is the harmonic mean of these two figures.

7

Chord Parser Results

Dependency recovery:

P (%) R (%) F (%) Coverage (%)

Chord parser 79.99 78.25 79.11 96.05

The results obtained by the chord-input parser are shown on this slide. I will
not discuss this table at length here, but we will return to these figures later as
a comparison for other systems. Worth noting, however, is that I report a figure
for the system’s coverage. This is because it is possible that for some input the
parser fails completely to find any analysis. We can see from the table that this
happens only rarely in this experiment.

8

4 Parsing MIDI

Parsing Notes

• We can parse chord sequences

G C G C G D7 G

• Can we parse music?

G C G C G D7 G

• Harder task

• Potentially more useful

So far, I have demonstrated a method for harmonic analysis of a chord sequence
input. Harmonic analysis of a musical performance is harder. In some sense, it
is a more interesting task, since it is closer to the task performed by a human
listener on hearing a piece of tonal music. It is also likely to be more useful in
practical music processing applications.

Parsing Notes

• We can parse chord sequences

G C G C G D7 G

• Can we parse music?

G C G C G D7 G

• Harder task

• Potentially more useful

Midi

64 (C)

68 (E)

71 (G)

73 (A)
72 (G♯)

75 (B)

66 (D)

63 (B)

time

Note on

Note off

One of the reasons this is a harder
task is that it must involve segment-
ing the input into the primitive units
of the analysis – chords. It is worth
noting, however, that the system may
never assign explicity chord labels to
these segments.

We shall represent our input data
in the form of MIDI. As far as we
are concerned for the time being, this
data encodes a stream of notes, each
with a pitch (as a keyboard note num-
ber), a start time and an end time.

9

Parser Evaluation Metric

C E7 A7 Dm7 G7 Dm7 D[7 C

dom dom

dom

dom dom domGold:

dom dom domdom dom dom

• System performs segmentation

• Optimized dependency recovery (ODR)

MIDI-input
parser:

Optimal alignment

Parser Evaluation Metric

C E7 A7 Dm7 G7 Dm7 D[7 C

dom dom

dom

dom dom domGold:

C E7 A7 Dm7 G7 Dm7 D[7 C

domdom dom dom

• System performs segmentation

• Optimized dependency recovery (ODR)

Chord-input
parser:

Let us return to the issue of an
evaluation metric. Unfortunately, we
cannot simply apply the dependency
recovery evaluation metric that we
used before to this task. Recall
that previously we simply checked
which dependencies were correctly re-
covered to compute recall, precision
and f-score of the parser’s output (see
right). Now that we are working with
systems that perform segmentation of
their input, we do not know how the
segments over which the parser’s analysis is defined correspond to the segments
in the gold-standard annotations, and so we don’t know which dependencies
have been recovered.

Our solution is to find the optimal alignment between the two dependency
graphs – that which gives the most recovered dependencies – and compute
the dependency recovery on the basis of that. I shall refer to these figures as
optimized dependency recovery.

Using this metric also means that we can evaluate a MIDI-input parser on
a particular input by comparing its dependency graph to that annotated in the
corpus for the same song.

10

MIDI Data

• MIDI data for sequences in chord corpus

• Not modelling metre

• Barlines annotated

time

G D7 G C D7 G

• These experiments: 41 MIDI files (∼20 songs)

We have collected a set of MIDI-encoded performances available on the web and
added them to the corpus described above. The set covers most of the songs in
the corpus, with in general several MIDI files per song.

The models I will describe below do not incorporate a model of metre. Con-
sequently, we need to make an extra assumption about the form of our input
data. Namely, we assume that we have an alignment of the MIDI data to some
high-level metrical unit (say, half-bars). The task of segmentation now becomes
somewhat easier: it now boils down to decided at which of these units a new
chord begins.

The experiments below are evaluated on 41 MIDI files which we currently
have this information for, covering a total of about 20 songs from the chord
corpus.

I will now present two simple ways of tackling this harder problem. Both
extend the chord-input parser described above. Both systems are really just
proofs of concept to give an indication of how the parser might be extended to
the harder task.

11

4.1 Pipeline System

MIDI Parsing 1

64 (C)

68 (E)

71 (G)

73 (A)
72 (G♯)

75 (B)

66 (D)

63 (B)

CM7 F♯φ7 B7♭9 Em7 A7 Dm7 Gm7 Dm7 G7 CM7

MIDI input

Chord recognizer

Chord-based supertagger/parser

The first system is a strict pipeline. One model assigns a single sequence of chord
labels to the MIDI data (deciding on the segmentation). This chord sequence
can then be passed on to the old chord-input parser exactly as it is.

12

Chord Recognition Model

• Adaptation of audio chord recognition model: Ni et al.
(2011)2

• HMM

• Train using EM

k: C

r: C

t: major

k: C

r: C

t: major

k: C

r: G

t: 7

C G7

P(r ′ − k ′, t′|r − k, t)
×P(k ′|k)

P(ni − r |t)

2Harmony Progression analyzer for Mirex 2011

To perform the initial labelling of the MIDI data, we use an adaptation of the
audio-based chord recognition model of Ni et al. (2011). The model is an HMM.
Each state encodes three pieces of information: the current key, the root of the
current chord and the type of the current chord.

The transition and emission distributions are constrained in certain ways. In
the transition distribution, the chord root is taken relative to the key (r−k).
Then the chord root and type are conditioned only on the previous chord root
and type, whilst key transitions are modelled independently (P (k′|k)).

The emission distribution treats the MIDI notes as a bag of notes: each
is emitted independently, conditional on the state. The pitches of the notes are
taken relative to the current chord’s root (ni− r) and the emission distribution
for each note is conditioned only on the chord type.

The model is trained using expectation-maximization, biased by its initial-
ization by giving the notes each chord a high probability and others a lower
probability, and transition probabilities initialized to those estimated from the
chord corpus.

We can produce a single best chord sequence for a MIDI file using the Viterbi
algorithm.

13

MIDI Parsing 1: Results

Optimized dependency recovery

P (%) R (%) F (%) Cov (%)

Chord parser (DR) 79.99 78.25 79.11 96.05
Chord parser (ODR) 83.46 81.63 82.53 96.05

MIDI pipeline 63.80 50.33 56.27 78.05

• Previous results with new metric for comparison

• Ceiling for MIDI-input parsers

• Pipeline: low coverage

These are the results for the pipeline system, evaluated using ODR. The first
row of the table (grayed out) shows the results we saw before for the chord-input
parser. The second shows the same results, this time evaluated using ODR for
comparison – this gives slightly higher figures.

It is worth noting that the chord-input parser is not a baseline for this task.
In fact, it is performing an easier task, so it makes more sense to think of it as
a ceiling.

The pipeline system scores rather badly. Note that this is partly due to its
low coverage. Recall that for certain chord-sequence inputs, the parser may fail
to find any analysis. This has happened in a much higher proportion of cases
this time. It is easy to see why. The chord recognizer has a very weak notion of
coherence (especially with a small amount of training data). In many cases, it
will produce a chord sequence that the parser cannot assign any categories to
the combine into a full parse.

14

4.2 Lattice System

MIDI Parsing 2

64 (C)

68 (E)

71 (G)

73 (A)
72 (G♯)

75 (B)

66 (D)

63 (B)

MIDI input

Chord recognizer: lattice

Lattice-based supertagger/parser

This second system attempts to improve on the first by reducing the problem
of over-commitment of the chord recognition model. The same model is used
again, but this time, instead of producing a single best chord sequence, it outputs
a weighted lattice, with multiple possible chord labels for each segment. The
supertagger component of the parser is adapted to take input in the form of a
lattice and the parser proceeds as before.

This technique effectively allows the parser to take advantage of some of the
chord recogizer’s uncertainty and make use of labels that the recognizer consid-
ered reasonably probable, but that were not on the most probable sequence.

15

MIDI Parsing 2: Results

Optimized dependency recovery

P (%) R (%) F (%) Coverage (%)

Chord-input parser 83.46 81.63 82.53 96.05

MIDI pipeline 63.80 50.33 56.27 78.05
MIDI lattice 69.94 54.30 61.14 92.68

• Lattice improves parser’s coverage

• Still a long way off chord parser

The results of the lattice system are a considerable improvement on the
pipeline and, in particular, have pushed up the coverage greatly, as we hoped.

These results are still a long way off the chord-input parser, but that is
unsurprising and they show that even with rather a naive approach we can set
a reasonable baseline.

16

5 Conclusion

Better MIDI Parsing

• Basic system for MIDI analysis

• Many possible improvements:
• metrical models
• better realization models – voice leading
• joint supertagging and MIDI model
• more unsupervised training

These two systems are a proof of concept for the MIDI parsing task. There
are many ways in which they can be directly improved: here are a few.

We expect that incorporating a model of the piece’s metre into MIDI mod-
els would improve the results and it would furthermore allow us to relax our
assumptions about the form of our input data to cover a more general class of
MIDI performances.

The system would certainly benefit from better models of realization. Ideally
these should encompass notions such as voice-leading.

We have improved over the pipeline system by reducing the bottleneck be-
tween the chord recognizer and the supertagger. Better still would be to incor-
porate these two models into a single joint model, performing segmentation and
supertagging in one go.

Finally, the chord recognizer was training using EM: it would be easy to
simply feed to more training data. MIDI data is not hard to come by.

17

Conclusion

• Statistical parsing can be applied to structured harmonic
analysis of music

• Demonstrated simple models for efficient parsing

• This method can be extended to MIDI parsing

• Evaluate MIDI parsing using optimized dependency recovery

• Two naive extensions

• Possible improvements

• More on chord-input parser at ICMC 20123

3Statistical parsing for harmonic analysis of jazz chord sequences

We have shown that statistical parsing techniques used for natural language
parsing can be used for structured harmonic analysis. I have implemented some
of these techniques using supervised statistical models to demonstrate that we
can use them to perform efficient parsing of music.

The method can be extended to the analysis of MIDI input. I have dis-
cussed an evaluation metric suitable for this task. I demonstrated two naive
approaches to extending our previous models to this task and suggested some
possible improvements.

We will be presenting a paper at ICMC 2012 this September (Granroth-
Wilding & Steedman, 2012 (to appear)) covering more details of the first system,
the chord-input parser.

18

References

Granroth-Wilding, M., & Steedman, M. (2012 (to appear)). Statistical parsing
for harmonic analysis of jazz chord sequences. In Proceedings of the Interna-
tional Computer Music Conference. International Computer Music Associa-
tion.

Hockenmaier, J., & Steedman, M. (2002). Generative models for statistical
parsing with Combinatory Categorial Grammar. In Proceedings of the 40th
Meeting of the ACL, (pp. 335–342). Philadelphia, PA.

Ni, Y., Mcvicar, M., Santos-rodriguez, R., & Bie, T. D. (2011). Harmony
progression analyzer for mirex 2011. In Proceedings of the 12th International
Society for Music Information Retreival (MIREX), (pp. 1–4).

19

